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Noise theory is used to study the temporal correlations of stationary random fluctuations that are homoge-
neous in space. Statistical properties of the fluctuations, such as the power spectrum and the correlation
function, are computed. The results are compared with the observed plasma density fluctuations from tokamak
experiments.
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I. INTRODUCTION

The fluctuation-induced transport of particles and energy
is important to plasma confinement in a fusion device �1�.
Various methods have been developed for solving fluctuation
problems �2–6�. In this paper, we use noise theory �7,8� to
study the temporal correlations of stationary and Markovian
fluctuations that are homogeneous and isotropic in space.
The results are compared with the observed plasma density
fluctuations during a steady-state discharge �9�.

We define random fluctuations �= ��i� to have zero mean
value ��i�t��=0, where �¯� denotes the ensemble average.
The statistical properties of stationary fluctuations can be
quantified by the correlation function and the power spec-
trum.

The correlation function is defined as ��i�t�� j�t−���
=Cij���, where � is the time difference. If the Fourier trans-
form of �i�t� is denoted by �i���, then the power spectrum is
defined as ��i���� j

*�����=Sij������−���, where the asterisk
denotes the complex conjugate.

According to the Wiener-Khintchin theorem �7�, the Fou-
rier transform of the correlation function equals the power
spectrum

Sij��� = 	
−�

�

d� e−i��Cij��� , �1�

and the inverse Fourier transform of the power spectrum
equals the correlation function

Cij��� = 	
−�

� d�

2�
ei��Sij��� , �2�

where �=2�f . If we let S+���=
0
�d� e−i��C���, then Eq. �1�

can be written as �7�

S��� = S+ + S+
T�, �3�

where T denotes the matrix transpose.
The conditional probability P�� , t ��o� is the probability

that ��t� will take the value � at time t given ��t=0�=�o.
The conditional mean is defined as �7�

����o =	 d� P��,t��o�� , �4�

where �¯��o denotes conditional mean. For Markovian sys-
tems, the evolution of the conditional mean is modeled
by �7�

d

dt
��i��o = − �ij�� j��o, �5�

where � is the response matrix.
Time reversibility �7� requires the correlation function to

be even and symmetric: C���=C�−��=CT���. Thus the cor-
responding power spectrum is real. Then the correlation
function takes the form �7�

C��� = e−����C�� = 0� , �6�

where C��=0� represents correlations at one instant of time.
Thus �7�

S+
T = S+ = �� + i�I�−1 · C�� = 0� , �7�

where I is the unit matrix. Hence Eq. �3� becomes �7�

S��� = 2 Re S+��� = 2 Re M−1 · C�� = 0� , �8�

where M=�+ i�I.
To study spatial correlations, we choose a set of random

variables �i→��x� so that a Markovian description of a
physical system is possible �7�. The � we consider represents
the fluctuations of a single parameter, such as particle den-
sity, at different spatial points. Thus we replace the discrete
index by the spatial coordinate �7�. For example, Eq. �5�
becomes

�

�t
���x���o +	 d3x���x,x�����x����o = 0. �9�

For homogeneous fluctuations, the correlations between
different spatial points depend only on the differences 	x
=x−x�. Thus the matrix products become convolution inte-
grals �6�. For example, M ·M−1=I becomes

	 d3x�M�x − x��M−1�x� − x�� = ��x − x�� . �10�
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Then the spatial Fourier transform of Eq. �10� gives
M−1�k�=1/M�k�. Similarly, Eq. �8� becomes

S�x − x�,�� = 2 Re	 d3x�M−1�x − x��C�x� − x�,� = 0� ,

�11�

where M�x−x��=��x−x��+ i���x−x��. Then the spatial
Fourier transform of Eq. �11� gives

S�k,�� = 2 Re
C�k,� = 0�
��k� + i�

. �12�

II. DIFFUSION MODEL OF RANDOM FLUCTUATIONS

For Markovian systems with diffusion response, the con-
ditional mean of random fluctuations is modeled by the dif-
fusion equation �7�

�

�t
����o = D�2����o, �13�

where D is the effective diffusion coefficient. Comparing Eq.
�9� with Eq. �13�, we obtain the diffusion response function

��x − x�� = − D�2��x − x�� . �14�

Then the spatial Fourier transform of Eq. �14� gives

��k� = Dk2, �15�

where k= �k� is the magnitude of the wave vector.
Experiments �10� show that the spatial correlation of

plasma fluctuations can be approximated by an exponential
decay. Hence we assume that for isotropic fluctuations, the
spatial correlations at one instant of time take the form

���x,t���x�,t�� = C�	x,� = 0� = Coe−�	x�/
c, �16�

where Co= ��2�x , t�� is the mean square value of the fluctua-
tions.

Next we assume that the fluctuation energy is determined
by fluctuation wavelengths that are shorter than the correla-
tion length 
c. Hence for isotropic fluctuations, we define
E�k�, the wavelength spectrum of the fluctuation energy, by
the condition

��2�x,t�� =	 d3k C�k,� = 0� = 	
kc

�

dk E�k� , �17�

where kc=2� /
c is the cutoff wave number.
The k dependence of E�k� may be inferred from C�k ,�

=0�, the Fourier transform of Eq. �16�, as follows: in three
dimensions, E�k��k2C�k�, where C�k��
c

3 / �1+
c
2k2�2

�1/ �
ck
4� for 
ck�2�; in two dimensions, E�k��kC�k�,

where C�k��
c
2 / �1+
c

2k2�3/2�1/ �
ck
3� for 
ck�2�; in one

dimension, E�k��C�k�, where C�k��
c / �1+
c
2k2�

�1/ �
ck
2� for 
ck�2�.

In summary, under the assumption of fluctuation wave
numbers k�kc, regardless of the spatial dimension, E�k�
�k−2, then the proportionality constant is obtained from the
condition Eq. �17�. Thus

E�k� = Co
kc

k2 . �18�

Note that the autopower spectral density function is given
by

S�	x = 0,�� =	 d3k S�k,�� . �19�

For isotropic fluctuations, using Eqs. �12� and �17�, we write
the autopower spectrum Eq. �19� as

S��� = 	
kc

�

dk E�k�
2Dk2

�Dk2�2 + �2 = 	
kc

�

dk
2CokcD

D2k4 + �2 �20�

where Eqs. �15� and �18� are used. Note that the autopower
spectrum Eq. �20�, which indicates the frequency distribution
of the fluctuation energy, satisfies the condition that the area
under the spectrum is equal to the mean square value of the
fluctuations,

��2�x,t�� = 	
−�

� d�

2�
S�	x = 0,�� . �21�

We can write the diffusion coefficient of random fluctua-
tions as

D = fc/kc
2 = fc
c

2/�2��2, �22�

where fc has the unit of frequency.
If we let y=k
D

� , then Eq. �20� becomes

S��� = 2Co


fc

�3/2	
fc/�

� dy

y4 + 1
�

2Co

3fc
H�− �2/fc

2� �23�

where H�z� represents the hypergeometric function

2F1�3/4 ,1 ;7 /4 ;z�. Thus fc turns out to be the spectrum
width. Note that even if the maximum wave number kmax of
the measurement is finite, for kmax

3 
kc
3, the result is still a

good approximation.
Then the inverse Fourier transform of Eq. �23� gives the

autocorrelation function, which quantifies the correlations
between different times at one spatial point,

C�	x = 0,��/Co = e−���fc − 
����fc erfc�
���fc� �24�

where erfc�z� is the complementary error function. Thus fc is
also the decay rate, and 1/ fc=�c is the correlation time.

In summary, by using the pure diffusion model, we have
obtained the analytic functions of the autopower spectrum
and the autocorrelation. In the pure diffusion model, the
spectrum has a single peak at zero frequency, and the auto-
correlation purely decays away. We find that the diffusion
gives rise to the decay feature of the autocorrelation and a
broad frequency spectrum of random fluctuations.

Finally, to compare with the experimental data, the decay
and oscillation features of the autocorrelation are simply
modeled by the diffusion decay part Eq. �24� times a cosine
with a constant oscillation frequency. That is,
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C���/Co = cos��o���e−���fc − 
����fc erfc�
���fc�� �25�

where �o / �2��= fo is the oscillation frequency. It follows
from Eqs. �23� and �25� that the autopower spectrum peak is
shifted away from zero frequency. That is,

2S�f� = 2
1

2
�2Co

3fc
��H�− �� + �o�2/fc

2� + H�− �� − �o�2/fc
2�� .

�26�

Thus fo is also the peak frequency of the spectrum. It follows
from Eq. �21� that the fluctuation power can then be ex-
pressed as

��2� = 	
0

�

df 2S�f� . �27�

To explain the physical meaning of the constant oscilla-
tion frequency, the relaxation of the conditional mean is
modeled by the convection-diffusion equation �7�

�

�t
����o + U · �����o − D�2����o = 0, �28�

where U is the flow velocity. Thus the response function
becomes

��x − x�� = − D�2��x − x�� − U · ���x − x�� . �29�

The spatial Fourier transform of Eq. �29� gives

��k� = Dk2 − ik · U . �30�

Then it follows from Eq. �12� that the frequency � in Eq.
�20� is replaced by ��−k ·U�, and the denominator becomes
D2k4+ ��−k ·U�2. For large wave number k�kc the higher
powers of the k dependence become more important. There-
fore, we approximate k ·U= ±�o as a constant in Eq. �25�.

III. COMPARISONS WITH PLASMA EXPERIMENTS

During a steady-state plasma discharge, the fluctuations in
the magnetized plasma usually have the following properties:
the time series of the signals are almost random, as shown by
the measured probability density function �10�; the fluctua-
tions are roughly isotropic in the two dimensions transverse
to the strong magnetic field �11�; the correlation length of the

fluctuations is shorter than the scale lengths of the back-
ground density and temperature gradients, which means that
the fluctuations are approximately homogeneous.

Therefore, we may use Eq. �26� to explain the shape and
height of the measured auto-power spectrum and Eq. �25� to
explain the measured autocorrelation function. When � rep-
resents the fractional fluctuations, the mean square value Co
is dimensionless.

As shown in Fig. 1, the theoretical results are compared
with the observed plasma density fluctuations from tokamak
experiments �9�. The following parameters are used to plot
the curve in Fig. 1: fo�8 kHz for the peak frequency, the
measured root mean square value 
Co�0.24, and fc
�34 kHz for the spectrum width. Thus the correlation time
�c=1/ fc�0.03 ms. For the correlation length 
��1 cm, we
estimate the local diffusion coefficient D�= fc
�

2 / �2��2

�0.09 m2/s.
The comparison between the theory and the plasma den-

sity fluctuations from helimak experiments �12� is shown in
Figs. 2 and 3. Note that the autocorrelation data in Fig. 2 and
the spectrum data in Fig. 3 were computed from the same
time series data. Hence the autocorrelation curve and the
spectrum curve are plotted by the same parameters: the ob-
served oscillation frequency fo�1420 Hz, the measured root
mean square value 
Co�0.27, and fc�628 Hz for the decay
rate. Thus the correlation time �c=1/ fc�1.6 ms. For the cor-
relation length 
��10 cm, we estimate the local diffusion
coefficient D�= fc
�

2 / �2��2�0.16 m2/s.

FIG. 1. The dots represent the autopower spectrum data of the
fractional plasma density fluctuations from tokamak experiments
�9�. The curve is given by Eq. �26�.

FIG. 2. The dots represent the autocorrelation data of the plasma
density fluctuations from helimak experiments. The curve is given
by Eq. �25�.

FIG. 3. The dots represent the square root of the autopower
spectrum data of the fractional plasma density fluctuations from
helimak experiments. The curve is given by the square root of
Eq. �26�.
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Note that in Figs. 1 and 3, the disagreement between the
theory and the data at the low and high frequencies �relative
to the peak frequency� my be caused by the fact that the
measured fluctuations are not perfectly random and isotropic.

In conclusion, we have calculated the autopower spectrum
and autocorrelation function of stationary random fluctua-
tions that are homogeneous and isotropic in space. The com-
parisons show that the results derived from noise theory can
explain the autocorrelation function and the autopower spec-
trum of the observed plasma fluctuations during a steady-

state discharge. Our analysis shows that, using the correla-
tion time and the correlation length, we may estimate the
transport coefficients of random fluctuations.
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